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The complexity and autonomy of the constituent disciplines and the diversity of the 
disciplinary data formats make the task of integrating simulations into a multidisciplinary 
design optimization problem extremely time-consuming and difficult. We propose a dy- 
namically reconfigurable approach to  MDO problem formulation wherein an appropriate 
implementation of the disciplinary information results in basic computational components 
that  can be combined into different MDO problem formulations and solution algorithms, 
including hybrid strategies, with relative ease. The ability to  re-use the computational 
components is due to  the special structure of the MDO problem. We believe that this 
structure can and should be used to formulate and solve optimization problems in the 
multidisciplinary context. The present work identifies the basic computational compo- 
nents in several MDO problem formulations and examines the dynamically reconfigurable 
approach in the context of a popular class of optimization methods. We show that if the 
disciplinary sensitivity information is implemented in a modular fashion, the transfer 
of sensitivity information among the formulations under study is straightforward. This 
enables not only experimentation with a variety of problem formations in a research en- 
vironment, but also the flexible use of formulations in a production design environment. 

Introduction 
Design optimization is not equivalent to nonlinear 

programming (NLP). The design problem is much 
more complicated and amorphous than the most dif- 
ficult problems amenable to current NLP techniques. 
Recent years have seen the beginnings of promising 
alternative approaches to design optimization; see, 
e.g., Tatting and Giirdal.’ Nonetheless, ever since 
its early application in structural optimization (see 
an extensive bibliography in Haftka and Giirdal’), 
NLP has been the most successful paradigm avail- 
able to-date for solving simulation-based design prob- 
lems, having gradually made its way into such areas 
as CFD-based design3f4 and Multidisciplinary Design 
Optimization516 (MDO). In this paper, we examine the 
formulation of MDO problems as optimization prob- 
lems and for this purpose we view MDO as comprising 
a subset of the broader design problem that can be ex- 
pressed in terms of NLP. 

It is interesting to note that, despite great promise, 
state-of-the-art-or even systematic-NLP methods 
are not widely used for realistic MDO problems. In 
fact, relatively successful applications of systematic 
optimization techniques can be usually observed in 
highly controlled, academic environments, where re- 
searchers operate on sets of a few analyses whose read- 
ily available source code is open to modification by the 
participants. In contrast, most of the attempts to use 
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NLP to its full extent and benefit we have observed in 
a variety of more complex multidisciplinary settings 
have so far failed. In practice, heroic software integra- 
tion efforts directed at implementing a version of the 
multidisciplinary analysis (MDA) via a fixed-point it- 
eration usually consume most of the available project 
time and effort. This frequently leaves no resources 
for computing reliable derivatives, let alone experi- 
menting with optimization formulations and software. 
The situation is exacerbated by the need to compute 
MDA-based objectives, constraints, and sensitivities 
automatically over relatively large regions of the de- 
sign space. If solving an application problem is an 
end in itself, attempting the solution of a particular 
formulation may lead to an impasse. In this case, at- 
tempting an implementation of another formulation 
involves “unscrambling” the codes from the existing 
formulation and expending a considerable effort to 
implement a new one. Resource limitations usually 
make such an activity prohibitive. If, in addition to 
solving the problem, the other main project objective 
is to  develop new design methods, again, limited re- 
sources rarely leave room for experimentation once the 
project time has been consumed by the conventional 
implementation of MDA. This leads to one-of-a-kind 
implementations rather than flexible applications of 
methodologies suitable to specific classes of problems. 

Solving MDO problems is further complicated by 
such features as the problematic convergence of the 
constituent analyses, the presence of discrete variables, 
and the unavailability or high cost of the disciplinary 
derivatives, among other difficulties. But even assum- 
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ing sufficient smoothness and the availability of the 
derivative information, the synthesis of realistic MDO 
problems presents a challenge. 

Engineering frameworks that have appeared over the 
past decade are meant to assist with MDO problem 
synthesis. Indeed, they make the task of data exchange 
among the components of the design problem easier 
once the contributing simulations are wrapped for in- 
clusion in the framework. Computational frameworks 
appear to be of most benefit in a production environ- 
ment, in which the properties of the design problem 
are relatively stable. But in a research environment, 
the current design frameworks usually lack the capa- 
bilities necessary to make them flexible exploratory 
tools. An examination of computational frameworks 
is outside the scope of this paper. We will say only 
that, in the context of the present work, design frame- 
works that we have observed do not, provide tools for 
analyzing the design problem in terms of appropriate 
formulations, nor for matching the formulation with 
appropriate optimization algorithms. The task of re- 
configuring problem formulations does not appear to 
be made easier by the existing frameworks. How- 
ever, computational problem solving environments are 
evolving and these shortcomings may be less of an is- 
sue in the future. 

With the aim of easing MDO problem synthesis and 
solution via NLP techniques, we have recently exam- 
ined, both experimentally7 and a n a l y t i ~ a l l y , ~ ~ ~ ~  lo,ll 
the influence of a number of MDO problem formula- 
tions on the computational tractability of the resulting 
problems and have observed how the analytical fea- 
tures of MDO problem formulation, such as the degree 
of subsystem autonomy, directly influence the ability 
of numerical algorithms to solve the problem reliably 
and efficiently. Given the high cost of simulation- 
based function evaluations, it is especially important 
in MDO and single-discipline simulation-driven opti- 
mization to arrive at problem formulations that lead 
to  efficient and reliable solution strategies. 

Engineering practitioners of NLP have always un- 
derstood the importance of optimization problem for- 
mulation - many interesting efforts over the past 
three decades address various ways to pose com- 

With some notable exceptions,13> 19,22  most efforts 
have been motivated by the philosophy we term the 
structural perspective. In the structural perspective 
the physical structure of the problem and organiza- 
tional considerations are the main driving forces be- 
hind the choice of the mathematical problem formu- 
lation. The main drawback of the exclusive focus on 
physics and organization is that it may lead to non- 
linear programs which are difficult to S O ~ V ~ , ~ ~ ~ ~  given 
the state of the art in NLP. In contrast, the algorith- 
mic  perspective we propose attempts to make use of 
the physical structure of the problem and conform to 

plex problems.12, 13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24 ,25 ,26  

organizational features as much as possible without 
sacrificing solubility by available algorithms. At times, 
solubility by the available algorithms may mean that 
we cannot satisfy all the desiderata, e.g., disciplinary 
autonomy, suggested by the structural perspective. 
In this case, the practitioner must decide between 
the relative merits of the resulting formulations. Of 
course, as optimization methods evolve, a formulation 
that was difficult or impossible to solve may become 
amenable to  a newly developed algorithm. The algo- 
rithmic perspective allows us to formulate problems 
in the best possible way, given the state of the art in 
optimization algorithms, and it also points out the ob- 
stacles that must be addressed to enable solving the 
currently difficult formulations, such as general non- 
linear multilevel problems. 

Following the algorithmic perspective, we have ar- 
rived at the following conclusions: 

0 All MDO problem formulations are related and, 
in fact, share the same basic computational com- 
ponents comprising function and sensitivity infor- 
mation needed to solve the resulting optimization 
problems. 

0 Although the task of making the disciplinary anal- 
yses “speak to one another” is difficult and re- 
mains unchanged for all problem formulations, 
MDO problem synthesis and solution can be sig- 
nificantly eased with an appropriate implementa- 
tion of the basic computational components. 

In light of these observations, we propose a dynami- 
cally reconfigurable approach to  MDO problem formu- 
lation that may be summarized as follows: an appro- 
priate implementation of the disciplinary information 
results in basic computational components that can 
be combined into different MDO problem formulations 
and solution algorithms, including hybrid strategies, 
with relative ease. The ability to re-use the compu- 
tational components is due to the special structure of 
the MDO problem. We believe that this structure can 
and should be used to formulate and solve optimiza- 
tion problems in multidisciplinary context. 

This approach was initiated in Lewisz7 for uncon- 
strained MDO problems (simulations are viewed as 
equality constraints in some of the problem formula- 
tions). Here we examine this approach for generally 
constrained MDO problems and continue the develop- 
ment of the ideas in application to specific algorithms. 
In particular, we identify the basic computational com- 
ponents in several MDO problem formulations and 
examine the dynamically reconfigurable approach in 
the context of barrier-SQP optimization. We show 
that if the disciplinary sensitivity information is imple- 
mented in a modular fashion, the transfer of sensitivity 
information among the formulations under study is 
straightforward. This enables not only experimenta- 
tion with a variety of problem formations in a research 
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environment,, but also the flexible use of formulations 
in a production design environment. 

The Origins of Reconfigurability 
The capacity for reconfigurability stems from the re- 

lation among MDO problem formulations. We demon- 
strate this on a model problem. 

l o  

we present this discussion for a two-discipline MDO 
problem. The two disciplines may represent, for in- 
stance, the aeroelastic interaction between aerody- 
namics (discipline 1) and structural response (disci- 
pline 2) for a wing in steady-state flow. We limit our 
discussion to three formulations: simultaneous anal- 
ysis and design (SAND) ,2 the straightforward fully 
integrated optimization (FIO) formulation, and dis- 
tributed analysis optimization (DAO) .'I l o t  22 We refer 
the reader to that earlier work for the detailed de- 
velopment, references to the origins, and comparative 
properties of the three formulations. 

We assume that each subsystem of the two-discipline 
model problem is based on a disciplinary simulation. 
Each disciplinary analysis A; takes as its input a set 
of disciplinary design variables l ; ,  a set of shared or 
system-level design variables s, and some parameters 
that are outputs of the other discipline. The variables 
11 and 12 are local to disciplines 1 and 2, respectively. 
Let the vector ai represent the totality of outputs from 
a given discipline, including all data passed to the 
other discipline as parameters and quantities passed 
to design constraints and objectives, if any. In the 
context of MDO, the parameters fed into discipline i 
are derived from the analysis outputs a j ,  j # i, of the 
other discipline, and are not directly manipulated by 
the designer in discipline i. In our aeroelastic example, 
for instance, the input a1 from structures to aerody- 
namics would include the wing shape, while the input 
ag from aerodynamics to structures would include the 
aerodynamic loads. In our notation, 

Following the conventions of our earlier 

We start with the SAND formulation. The distinc- 
tive feature of SAND is the treatment of the full MDA 
purely as equality constraints. The version of SAND 
in (1)  below, also introduces auxiliary variables 60, u1 

6 2 ,  to allow the disciplinary constraints the freedom of 
choosing iterates most appropriate to that discipline in 
the course of optimization. To ensure consistency at 
the solution among the shared design variables, corre- 
sponding consistency constraints are also introduced. 
Similarly, auxiliary variables t l  , and t2 ensure consis- 
tency among the analysis outputs, 

Vectors c' and cf represent the disciplinary inequal- 
ity and equality constraint systems, respectively. Vec- 
tors 6 and cf denote system-level constraint vectors 

that have contributions from both disciplines. 

Some of the variables are unnecessary for the SAND 
formulation, but we introduce them to draw connec- 
tions with other formulations. 

Other MDO formulations may be viewed as derived 
from the SAND formulation by closing a particular 
set of constraints. In particular, if we use the equality 
constraints 

to eliminate the analysis outputs a l ,  a2 as independent 
variables from the optimization problem, we obtain 
the DAO formulation. If, in addition, we eliminate 
U O , U ~ ,  ug , t 1 ,  t 2 as independent variables from SAND 
by always requiring the satisfaction of the rnultidisci- 
plinary consistency conditions 

then we obtain the FIO approach. 
We first stated SAND in the form (1) to give the 

reader the idea of all the degrees of freedom afforded by 
this formulation. Now we remove some of them, as well 
as some of the corresponding consistency constraints 
and the system-level constraints, for ease of exposition 
and without loss of generality. To simplify notation, 
we also leave the general equality constraints out of 
the remaining discussion - they can be handled in the 
same way as the simulation-based equalities. We thus 
restrict our attention to the following simplified SAND 
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formulation: 

where we now drop the superscript denoting the in- 
equality constraints. 

A DAO formulation is 

where the disciplinary responses a1 ( s ,  11, t z )  and 
~ ( s ,  l2 , t l )  are found by closing the disciplinary anal- 
ysis constraints 

Because we left the last three constraints of (1) out 
of the formulation, we may find it more difficult to 
find points feasible with respect to both analysis and 
design constraints c; .  We comment on that benefit of 
introducing the auxiliary design variables C T ~  and u2 in 
more detail e l s e ~ h e r e . ~ ~ ~ ~  

Finally, we consider the corresponding FIO formu- 
lation, 

where we compute t l  (s, 1 1 , l z )  and ta(s, 1 1 , l z )  by solv- 
ing the multidisciplinary analysis 

a1 = A1(s711,tz) t l  = a1 
a2 = A2 ( s ,  k?, t 1) t2 = a2. 

I The preceding can be simplified, of course, to 
I 

I t l  = AI(S,ll,tZ) 
t 2  = AZ(S,~Z,tl), 

but we will use the expanded version to emphasize the 
relationship to  the SAND formulation. 

We can view the DAO and FIO formulations (3) and 
(4) as having been obtained from the SAND formula- 
tion (2) by closing some of the multidisciplinary con- 
sistency (analysis) equality constraints in the SAND 
formulation. In both DAO and FIO this eliminates I 

some of the independent variables from the SAND for- 
mulation. 

Other problem formulations attempt to eliminate 
local design variables by solving disciplinary opti- 
mization subproblems, as in Collaborative Optimiza- 
tionZ5> 2 8 9 2 6 1 2 9  and Optimization by Linear Decompo- 
sition.l4, 16, l8 Arriving at specific reconfigurable rela- 
tions needed for these formulations would require more 
work, but the basic computational components would 
be the same. 

The relationships (8) and (9) introduced in the next 
section, in turn, tell us that the sensitivities of the 
objective and constraints in the DAO and FIO formu- 
lations are related to the sensitivities in the SAND for- 
mulations via variable reduction. This point is central 
to our perspective, since it means that computational 
components implemented for the SAND formulation 
can be reconfigured to yield the computational compo- 
nents needed for other formulations. We will make this 
point clearer by considering specific algorithms for the 
solution of the SAND, DAO, and FIO formulations. 

The Reconfigurable Approach 
In this section, we develop the computational com- 

ponents for three problem formulations and demon- 
strate the reconfigurable approach within the context 
of one class of nonlinear programming algorithms. 

We emphasize that, regardless of the algorithm and 
formulation, the basic computational components of 
functions and sensitivities required by algorithms re- 
main unchanged. One has to  show how to combine 
these components in various algorithmic settings to 
allow for a straightforward conversion among formula- 
tions. We choose to demonstrate the approach on the 
barrier sequential quadratic programming (SQP) class 
of methods because of the simplicity of inequality con- 
straint handling in barrier-SQP methods. A specific 
instance of the class is shown within the reconfigurable 
framework. 

Throughout the discussion it will become appar- 
ent that the sensitivity information required by large 
classes of optimization algorithms can be easily ob- 
tained by exploiting the structure of simulation-based 
computations. The same arguments apply to general 
nonlinear programming programs, but those based on 
PDE provide the necessary information in a natural, 
easily available form. 

The Reduced Gradient and Hessian 
We begin with some standard results. A variable 

appearing as a subscript denotes the partial derivative 
with respect to that variable. Suppose 4 ( x , u )  is a 
function and let 

= 4(x, 4x)), (5) 
where, given x, u(x) is computed by solving a system 
of equations 

S ( x ,  ?I(.)) = 0. (6) 
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We assume that S,, is invertible. The barrier subproblem for the DAO formulation is 
The derivatives of d~ and @ are related as follows. 

We refer to WT as the reduction operator. where 

1 
& and the Lagrangian L ( x ,  v; A) by -P ~ ~ l n c ; ( s , l l , t l )  i +Clnc ' , ( s ,Z2 , tz ) ]  j , 

L ( x ,  v; A)  = 4(x, v) + ATS(x, v). 
and the disciplinary responses a1 (sl 11, t z )  and 
az ( s ,  1 2 ,  t l )  are computed via the disciplinary analy- Then 

Vz@(x) = WT(x, v ( ~ ) ) V [ ~ , ~ ) 4 ( x ,  4.)). (8) 

If 4 is real valued, the quantity on the right-hand side a1 = Al(S,11,tZ) 
of (8) is known as the reduced g r~d ien t .~ '  The quan- a2 = AZ(S,~Z,tl). 
tity on the right-hand side of the following equation is 
called the reduced Hessian of the Lagrangian: Consider the relationship between the sensitivities 

in the SAND and DAO formulations. In the notation 
of the section on reduced derivatives, for the SAND 
formulation we have 

V : X @ ( ~ )  = WT ( V ~ X , U ) ~  + V ~ X , U ) ~  ' A) w, (9) 

where 

A derivation of these expressions can be found in a 
number of  source^.^^^^^ 
A Barrier-SQP Approach 

A barrier-SQP approach to (2), (3),  and (4) treats 
the inequality constraints by adding them in a bar- 
rier term to the objective, while retaining the equality 
constraints explicitly. Although our presentation has 
sufficient detail to convey the ideas, it is more concep 
tual than detailed for reasons of brevity. 

For the SAND formulation (2), the algorithm pro- 
ceeds by solving a sequence of equality-constrained 
subproblems of the form: and 

The injection matrix WDAo is 

I 
w D A 0  = ( -s,-isz ) . 

In this case, 

&,A2 O )  - I 
s u = (  dalA1 0 - I 

FSAND(S, 11 12,  t l ,  t ~ )  asA1 a l l ~ l  o 

t 2  = a2 (10) 
a1 = A1 (s, 11, t z )  
a 2  = A2(%12,tl), 

min 
S J l  , l a , t l , t z , a l , a z  

s.t. t l  = a1 sx = ( &A2 0 81,Az dtl()Az 8tf1 ) 
where now we have taken to indicating partial deriva- 
tives with d to avoid double subscripts. 

We then have 
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These relations show that the computational compo- 
nents needed to implement the barrier-SQP approach 

ment the barrier-SQP approach to the DAO forniula- 
tion. 

A similar relationship exists between the barrier- 
SQP subproblem for the SAND formulation and that 
for the FIO formulation, given by 

we have 

to the SAND formulation are those needed to imple- v ( s , l l , l z )  ~ F i o  = wzoV(s,ll,lz,tl , t z , a l  , ~ Z ) F S A N D  

and 

vqs,ll ,Iz) ~ F l o  = wZo~f8.l~ , Iz , t  , tz ,a l  ,az) ~ s A N D f i ’ F l 0 .  

The same computational components from the SAND 
formulation used in the DAO formulation are used in 

S , l l , l Z  min FFIO(s~  6 I l 2 )  (13) the FIO formulation. 

where A Reduced Basis ADDroach to the  Barrier-SQP 
Subproblem 

The barrier-SQP algorithm we sketch is similar to 
that described in, e.g., Byrd et al.31 For a specific 
choice of algorithm to solve the barrier-SQP subprob- 
lems, we can say even more about the relationship 
between the computational elements needed to solve 
the SAND, DAO, and FIO formulations. In this sec- 
tion we briefly discuss a reduced basis SQP algorithm. 

The solution of the SAND barrier subproblem (10) 

compute approximate solutions to subproblems of the 
is itself an iterative process, in which we successively 

form 

(14) 

FFIO(S~11r12) = f ( s ~ t l ( s ~ z l ~ 1 2 ) ~ f 2 ( S , 1 1 , / 2 ) )  

- p  [ In CI (SI  t l  (SI 11,12), t 2 ( S ,  11, 1 2 ) )  
i 

+ ~ l n ~ ~ ~ , t l ( ~ l ~ 1 , ~ 2 ~ , ~ ~ ~ S , ~ l l ~ 2 ~ ~  1 

j 1 
and we compute tl (s ,  11 , 1 2 )  and t z ( s ,  11 1 2 )  by solving 
the multidisciplinary analysis 

a1 = A 1 ( s 1 h 1 t z )  t l  = a1 minimize i p T H p  + g T p  
a2 = A z ( s , h , t l )  22 = a2. subject to V p p +  S = 0, 

Relating the FIO formulation to the SAND formula- 
tion in the notation of the section on reduced deriva- 
tives. we have 

The system of equations representing the constraints 
that are closed is 

In this case, 

where H is an approximation to the Hessian of the La- 
grangian and g is the gradient of the Lagrangian. Here 
3: is the total set of independent variables, and p the 
step we take in the iterative process. Specific ways of 
solving this problem in connection with equality con- 
straint minimization have been addressed in numerous 
publications.32,33,34, 35,36,37 

Given a step ~ L F  that is feasible with respect to the 
linearized equality constraints, and a basis 2 for the 
nullspace of the Jacobian of the equality constraints, 
one could express p as 

p = p t F  + zq 
for some vector q ,  and the SQP subproblem could be 
reduced to an unconstrained problem: 

minimize $ q T Z T H Z q  + ( g  + H p t F ) T Z T q .  (15) 

In a reduced basis approach to an equality con- 
strained optimization problem we take advantage of a 
certain form of basis for the nullspace of the linearized 
 constraint^.^^ At each iteration of the optimization 
algorithm, we use the fact that 

I 
z =  ( -S,-lS, ) 

is a basis for the nullspace of the Jacobian of S. As a 
linearly feasible point p t ~  we may simply take For the injection matrix WFIo 

6 OF 9 

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2003-3431 



, 

This corresponds to solving the linearized multidisci- 
plinary analysis equations. 

In terms of W ,  then, the model SQP subproblem 
(14) can be transformed to the unconstrained problem 

minimize $qTWTHWq + (g + H p L F ) T W T q .  

We then set p = Wq. 

Implementation of the  Reduced Basis Algorithm 
for the Different Formulations 

The relationship between the different formulations 
discussed in section on sensitivities means that it is 
possible to implement an optimization algorithm for 
the SAND formulation so that with a single modifica- 
tion we obtain an algorithm for either the FIO or DAO 
formulations. 

In the discussion that follows, the subscript and 
superscript “c” on the iterates denote quantities as- 
sociated with the current iterate, and the subscript 
and superscript “+” denote quantities associated with 
the next iterate. At each iteration, we approximately 
solve the subproblem 

4 

minimize + p T ~ p  + g T p  
subject to )I V g p  + S 11 5 8 (17) 

II P II L r1 
where H is an approximation to the current Hessian 
of the Lagrangian, g is the gradient of the Lagrangian, 
r is the current trust radius, and 0 is chosen to enforce 
sufficient decrease on 11 V g p  + S 11’ over a trust- 
region of radius @r,  where 0 < @ < 1 is fixed. We 
use Fraction of Cauchy Decrease (FCD) for sufficient 
decrease here. FCD is a mild condition meaning that 
the model predicts at least a fraction of the decrease 
that would have been predicted by the steepest descent 
step within the trust region. 

Algorithm 1 contains an outline of the solution pro- 
cedure for the SAND formulation. The approximate 
solution of the subproblem is effected in two stages. 
The first stage, Step 4, is to take a step in the basic 
variables to improve linear feasibility, as in (16). The 
second stage, Step 5, is then to improve optimality sub- 
ject to  the constraint of not degrading the improved 
linear feasibility achieved by Step 4. 

Algor i thm 1: Reduced-basis algorithm for 
SAND 
Initialization: Choose an initial ( E , ,  w,). 
Until convergence, do { 

1.  Compute the multiplier 

A S A N D  = -S;‘VVFsAND. 

2. Test for convergence. 
3. Construct a local model of L about 

4. Take a step p L F  to improve linear fea- 
sibility: 

5. Subject to the improved linear feasibil- 
ity, take a step to improve optimality: 

minimize 
subject to 

+qTWTHWq + (g + H ~ L F ) ~ w ~ ~  

II PLF + Wq II 5 r. 

6- Set P = ( P z , p v )  = PLF + Wq. 
7. Evaluate (x+, .+) = (G, v,) + ( p z , p v ) .  
8. Update (zc1wc), T ,  and other parame- 

ters. 
1 

Now suppose this algorithm is modified by adding 
an analysis step in which given design variables x,, 
the multidisciplinary analysis problem S(icl v,) = 0 is 
solved. 

Algor i thm 2: Reduced basis algorithm for 
SAND formulation with a multidisciplinary 
analysis step 
Initialization: Choose an initial 2,. 
Analysis: Solve S,,, (xc, v,(z,)) = 0 for 

Until convergence, do { 
VC(2,). 

1-6. These steps remain unchanged. 
7. Analysis: Solve S,,, (x+, w+) = 0 for 
u+(z+) and evaluate ( E + ,  w+). 
8. This step remains unchanged. 

1 
Then it can be shown that this single modification, 

illustrated in Algorithm 2, yields a trust region al- 
gorithm for the FIO f o r m ~ l a t i o n . ~ ~  Thus, simply by 
introducing an analysis step, the reduced basis barrier- 
SQP algorithm for the SAND formulation becomes 
a reduced basis barrier-SQP algorithm for the FIO 
formulation, without any re-implementation of sensi- 
tivities or other procedures. 

If we add a partial analysis step to the algorithm 
for the SAND formulation, an analysis that enforces 
feasibility with respect to the block of constraints S,,, 
from (13), as in Algorithm 3, then we obtain a reduced 
basis algorithm for the DAO formulation. 

Algor i thm 3: Reduced-basis algorithm for 
SAND formulation with an analysis step that 
eliminates w = (a1 , uz) .  
Initialization: Choose an initial (z,, v,). 
Analysis: Solve S,,, (zcl vC(xc)) = 0 for 

Until convergence, do { 
vc(xc). 

1-6. These steps remain unchanged. 
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7. Analysis: Solve S,,, ( x + ,  w+) = 0 
for v + ( x + )  and evaluate ( x + ,  w+). 
8. This step remains unchanged. 

1 
Thus, by adding appropriate analysis steps to the 

reduced basis Algorithm 1 for the SAND formula- 
tion, we obtain reduced basis algorithms for the FIO 
and DAO formulations. This means that a properly 
implemented SAND barrier-SQP approach can be re- 
configured to become a barrier-SQP approach for other 
formulations. 

Other Algorithms 
The reconfigurable scheme outlined in the previous 

sections would work for other methods that handle 
the inequality constraints by adding a penalty term 
to the objective. The augmented Lagrangian method 
is an example of such an algorithm. We believe the 
approach will be valid for active set methods; however, 
proving this assertion will require further work because 
of the complexity of active set methods. 

Concluding Remarks 
Experience with multidisciplinary problems points 

to the strong influence of the analytical features of 
MDO problem formulation on the ability of nonlinear 
programming algorithms to solve the problem reliably 
and efficiently. In our studies we maintain the algorith- 
mic perspective, which takes into account the problem 
structure and the organizational requirements to the 
greatest possible extent without sacrificing solubility 
by optimization algorithms. At the same time, we re- 
alize that the organizational requirements may bring 
a practitioner of MDO to use methods that emphasize 
the structural perspective over the algorithmic one. 
Regardless of the approach, there is a clear need for 
flexible MDO problem implementation th.at combines 
the capability to formulate and re-formulate problems 
as needed with the choice of optimization algorithms 
appropriate for specific MDO formulations. 

We believe that such a capability flows naturally 
from the fact that all MDO formulations need the 
same basic computational components and are related 
through the specific closure of constraints. Some com- 
binations of MDO formulations and optimization algo- 
rithms contain an even richer structure that results in 
a user’s ability to transform one formulation into an- 
other in the context of a specific algorithm with very 
little effort. We demonstrated this reconfigurable ap- 
proach on the barrier-SQP class of methods and three 
MDO problem formulation. 

Other problem formulations in other algorithmic 
contexts may require considerably more work to de- 
velop the easy reconfigurability. However, regardless 
of the formulation and algorithm, the computational 
components remain unchanged. Our current and fu- 
ture plans include developing an analysis of most 

major classes of algorithms in combination with the 
promising MDO problem formulations that, we hope, 
will result in a set of guidelines for choosing appropri- 
ate problem formulations and the attendant optimiza- 
tion methods, given specific problem characteristics. 
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